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Manual methods employing the Wulff net and stereographic projections are used to determine the 
crystallographic orientation of hexagonal crystal or grain surfaces from observations of traces of crys- 
taUographic planes. Equations are developed which enable such determinations to be carried out easily 
and precisely with computers for many kinds and combinations of traces observed. A method of this 
nature should reduce considerably the labour in the single-surface trace analysis of hexagonal crystals 
or grains. 

Introduction 

A well-known method of orienting the surface of a 
crystal or grain is to utilize traces of known crystallo- 
graphic planes on the surface such as slip lines, twin 
boundaries, edges of plate-shaped precipitates and 
etch pits, etc. Given traces on the surface of a crystal or 
grain one may proceed to orient the surface by opera- 
ting a stereographic plot containing the trace informa- 
tion, a Wulff net, and a standard stereographic plot 
in the manner described by Barrett (1952) or that de- 
scribed by Reed-Hill & Baldwin (1965). These manual 
procedures require some amount of labour and prac- 
tised skill and can be tedious if many orientation 
determinations are to be made. 

More appealing is the analytical or mathematical 
approach such as that of Tucker & Murphy (1953) for 
{100} traces on cubic crystals or those of Drazin & 
Otte (1963) and Fong (1973) developed for {111 } traces 
also for cubic crystals. The attractiveness of this type 
of approach is that in it are derived equations and 
mathematical relationships which, although complex 
for some cases, are readily programmed on a computer 
so that thereafter the business of obtaining crystal or 
grain surface orientations from trace observations be- 
comes simply a matter of feeding in trace data to the 
computer. Precise results are obtained and a multitude 
of orientation determinations may be performed ef- 
fortlessly in a short space of time. 

In this paper we will develop an analytical or 
mathematical method of deriving the orientatioo of a 
hexagonal crystal or grain surface given data on three 
trace directions on the surface all of {hOhk} or all of 
{hh2hk} and usually two other trace directions of any 
type. It is felt that such a method would be useful as it 
provides for a labour-saving computerized approach 
to the problem of orienting the surface of hexagonal 
crystals, particularly metals, using traces such as twins, 
slip lines, and basal planes revealed by polarized light. 

Preliminary considerations 

In Fig. 1 the regular hexagon A1A2AaA4AsA6, with 
centre O, represents the basal plane of a hexagonal 
crystal. The six planes of {hOhk} or of {hh2hk} are 
shown as A1A2K, A2AaK, AaA4K, A4AsK, AsA6K, and 
A6AIK. We will work in terms of a rectangular coor- 
dinate system OXYZ with axis OX parallel to OA3, 
axis O Yperpendicular to OAa, and axis OZ in the direc- 
tion of OK. Thus, in the case of {hOhk} planes OX, 0 Y, 
and OZ will be in the directions of [T2T0], [1010], and 
[0001]; in the case of {hh2hk} planes they will be parallel 
to [01T0], [2110], and [0001] respectively. We will also 
refer to crystallographic directions in terms of vectors 
referred to the OXYZ system; in the case of planes 
vectors expressing the directions of their normals will 
be used. So the six planes A1A2K, A2AaK, A3A4K, 
AaAsK, AsA6K, and A6AiK are given by 0,2/l/3,g), 
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(1, 1/l/3,g), (1, - 1/l/3,g), (0,2/I/3, - g ) ,  (1, 1/1/3, - g ) ,  
and ( 1 , -  1 / ] /3 , -g )  respectively in the OXYZ system 
where 

g=(k/h)/(c/a) for {hOhk} traces ] 
g=(k/]/3h)/(c/a) for {hh2hk} traces, j" (1) 

c/a being the crystal axial ratio. 
Our approach will be to consider firstly only three 

{hOhk} or three {hh2hk} trace directions (preferably 
the most distinct and precise looking ones), obtain the 
limited number of surface orientations which could 
give rise to these three trace directions, and then use 
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Fig. 1. Planes A1A2K, A2A3K, A3A4K, A4AsK, AsA6K, and  
A6AIK of {hOhk} or of  {hh2hk} whose  no rma l s  referred to the 
rec tangula r  coord ina te  system OXYZ shown  are given by 
the vectors (0, 2/V3,g), (1, 1/l/3,g), (1, - 1 l/3,g), (0, 2/l/3, - g ) ,  
(1,1/I/3, - g ) ,  and  (1, - 1/I/3, - g )  respectively where  
A1A2A3A4AsA6 is a basal plane.  
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Fig. 2. Three  traces AB, BC, and  CA on the crystal surface 
ABC p r o d u c e d  by planes  ABP, BCP, and  CAP of  {hOhk} or 
of  {hh~hk}. HP is a pe rpend icu la r  to the  p lane  ABC. 

the other observed trace directions to identify the cor- 
rect surface orientation. 

In Fig. 2 AB, BC, and CA represent the three initially 
considered trace directions observed on the crystal sur- 
face ABC. ABP, BCP, and CAP are the crystal planes 
producing these traces. There are three distinct geo- 
metrical arrangements of planes ABP, BCP, and CAP 
which we shall hereafter refer to as 

Arrangement I: ABP, BCP, and CAP are oriented 
as the planes A1A2K , A2AaK, and 
A4AsK in Fig. 1. 

Arrangement II: ABP, BCP, and CAP are oriented 
as A1A2K, A2AaK, and A3A4K. 

Arrangement III" ABP, BCP, and CAP are oriented 
as A1A2K, A3A4K, and AsA6K. 

For each of these Arrangements I, II, and III we 
shall choose the outward normals to the planes CAP, 
ABP, and BCP to be the crystal directions shown 
in Table 1 where jl,j3 = + 1 provide for the fact that 
within each arrangement the pyramid ABCP may 
have as many as four distinct configurations corre- 
sponding to the various ways the crystal surface ABC 
may intersect the planes ABP, BCP, and CAP. The 

crystallographic directions of AP, BP, and CP and the 

cosines (c~, c2, and ca respectively) of the angles BPC, 

APC, and APB have been worked out and are also 
displayed in Table 1 where j2--jlj3. 

In Fig. 2 HP is perpendicular to the plane ABC with 
H situated in ABC. We shall take the lengths of HP, 
BC, CA, AB, AP, BP, and CP to be h, ao, bo, Co, too, no, 
and 1 respectively. We shall also let the angles the three 
trace directions make with each other be ~, fl, and 7 as 
shown in Fig. 2. We now obtain quite readily: 

a~ =pin 2 - n + 1 (2) 

b0 2 =p2 m2 - m + 1 (3) 

e~ =p2 m z -  qmn +pin 2 (4) 
where 

pl = 1/4c~, P2 = 1/4e~, q=c3/2e:2, 

m=2ezmo, n=2elno. (5) 

From equations (2) and (3), 

_ sin 2 
p~n 2 sin2fl (pzm z -  m + 1) + n - 1 (6) 

1{ V[4p sin2 r ]} n= 1 + (p2m2-m+ 1)+ 1-4p~] o 

(7) 
From equations (3), (4), and (6) we get 

(1 + m 
sin 2 fl 

+m--2=(qm--1)n.  (8) 

A C 30A - 10 
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/ { 2  sin 2 a Some simplification follows if we now work in terms of: rpo x2 + S i x  + $2 = +_ x sin2 fl 

sin 2 a -  sin 2 y _ 2 sin a cos ~ / × [p°xE + (2po -- q0)x] + $3 r 1 jr 
sin 2 ~ -- sin fl J 

x = q m -  1 [ where 

(9) 2plp2 1 
P0 = q2 -- 2C 2 

2el _ C2 
q0-- 

q c~c3 

With these substitutions we obtain f rom equations (7) 
and (8)" 

1 i  ] / [ 2  sin 2 

n = 2 p l [ 1 - -  I/ [ sinEfl (poxZ + (Epo-qo)  x 

+ p o - q o + 2 p O +  1 - 4 p i ]  } (10) 

1 

2t,1 
- -  [rpox z + (2rpo - rqo + qo)x + r ( p o - q o  + 2p~) 

+ q0 -4p i ]  = x n .  ( l l )  

Substi tuting in equation (11) the value of  n given by 
equat ion (10) and re-arranging, 

(12) 

S~ = 2rpo + qo(1 - r ) - 1 ] 

S z = r ( p o - - q o  + 2p~) + qo--4p~ [ (13) 
_ 2 sin E ~ / & sinEfl ( p o - - q o + E p x ) +  1 - - 4 p l .  

On squaring equation (12) and gathering like terms 
together we obtain:  

- sinE fl  ] X 4 + 2 -s in2 f l  

+ ( S E  + 2rpoSE-S3)xE + 2S~SEx + S E = O  , (14) 

This is a polynomial  equation in x whose coefficients 
and constant  term are known for each of  the Arrange-  
ments I, II, and III since c~, fl, and ~ are measured values 
and px, P0, and q0 are known crystal lattice constants 
shown in Table 1. Hence equation (14), which is at 
most and in most  cases a quartic equation, may be 
solved for x using established methods.  

Table 1. Crys ta l lography  def ined in the derivation 

Note: jt  = +_ 1, j3 = + 1, j2 =jlJ3 

Arrangement I Arrangement II 
Crystal direction of (0 ,~-  3 g) ( 0 , ~ , g )  

outward normal to CAP 

Crystal direction of (1, ~3,  g ) j~ (1, ~3, g ) 
outward normal to ABP J~k 

( ) ( ' )  Crystal direction of 2 - g  J3 1, - 
outward normal to BCP J3 O, ~-~, [/3 ' g 

Crystal direction of A-P jl(g, V3g, - 2 )  A(g, l/3g, - 2 )  
(as a unit vector) --21/(g 2 + 1) -2-V(g~ + 1) 

Crystal direction of BP j2( - 3g, l/3g, 2) j2(g, 0, - 1) 
(as a unit vector) 21/(3g2+ 1) l/(g2+ 1) 

Crystal direction of C--P j3(-  3g, - I/3g, 2) 
(as a unit vector) j3(1, O, O) 2~(3gE-qS-ii 

A 3j~g j~(3g 2 + 2) 
cos B e C = c t  21/(3g2 + 1) - 21/[(g2 + 1) (3gz+ 1)] 

jEg jE(3g 2 + 2) 
cos APC = c 2 2[//---(~2 +--1) -- 2l/[(g 2 -t- 1) (3~g 2 q- 1)] 

j3 j3(g  2 + 2) 
cos APB = c3 l/[(ga + 1) (3ga+ 1)1 2(g2+ 1) 

1 3 g +  1 (gZ+ 1) (3g2+ 1) 
Pl = ~ 9g2 (3g~ + 2)2 

1 (gE+ 1) (3g2+ 1) 2(g2+ 1) 2 
Po = ~-~] 2 (g2 + 2)2- 

C2 3g 2 + 1 2(g 2 + 1 ) 
qo =__ clc3 3 g2 + 2-- 

Arrangement III 

)-x' 

1 
' V3 ' 

j~(3g, I/3g, - 2) 
21/(3g 2 + 1) 

jE(O, l/3g, 1) 
I/(3g 2 + 1) 

ja(3g, -- 1/3g, 2) 
21/(3g a + 1) 

jl(3gE--2) 
_ _ _  

2(3g 2 + 1) 

jE(3ga- 2) 
--2(3g z + 1) 
j3(3g 2 - 2) 
2(3g 2 + 1) 
(3g z + 1) 2 
(3g 2 - 2)2 

2(3g a + 1)2 
(3g 2 - 2) 2 

2(3g 2 + 1) 
3g z - 2 
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When the various values of x have been obtained 
for the Arrangements I, II, and III the corresponding 
values of m and n may next be found using equations 
(9) and (11) which give: 

x + 1 qo(x ÷ 1) (15) 
m - -  - -  - -  

q 2pl 

1 
n= zp;' lx [rp°xz+(1 +SOx+S2] • (16) 

If x=O (this occurs as a repeated root) the two cor- 
responding n values should be obtained through equa- 
tion (10) which gives: 

n = ( i  _+ 1/$3)/2p~. (17) 

We now have (vl, v2, va) in terms of known or determin- 
able quantities g, m, and n so that we may evaluate it. 
Since equation (14) may give as many as four real 
values of x we may find up to four possible values of 
(Vl, /)2, /)3) for Arrangement I. There will however be, 
in general, six ways of assigning observed inter-trace 
angles 61, 62, and 63 to e, fl, and y so that there are in 
fact six equations like (14) to consider. There could 
therefore be up to 24 possibilities of surface orienta- 
tion (Vl, v2, v3) under Arrangement I in accord with the 
three traces AB, BC, and CA in Fig. 2. 

Surface orientations under Arrangement II 

Proceeding as for Arrangement I we will obtain for 
Arrangement II (but for the proper sign)" 

[ 1  3g2÷1 1 ( 1 +  
- ~ 2 + 2 '  1/3 --m- 

(v 'v2 'v3)=[[  lrn 3g 23g2+1+2' 1/31 (___m 1 + 

n 3g 2 + ' g -m n 3g 2 + 
2 3 g  2÷1)  ( 1 1 3 g 2 + ~ ) ] 1 "  
n 3g 2 + 2 ' g + n 3g 2 + 

(19) 

We shall let the normal HP to the plane ABC, which 
gives the crystal-surface orientation, be given by the 
unit vector (v, v2, v3). After the various possible values 
of m and n for the three Arrangements I, II, and III 
have been obtained the corresponding crystal-surface 
orientations may next be determined. 

Surface orientations under Arrangement I 

The crystallographic directions of AP, BP, and CP for 
Arrangement I is given in Table 1. Taking the scalar 
product of (vl, v2, v3) and these directions and equating 

the products to the cosines of HPA, HPB, and HPC 
we get: 

In Arrangement II planes BCP and CAP are sym- 
metrically located about plane ABP so that when y is 
made equal to observed inter-trace angles 61, 62, and 
63 in turn it does not matter how the remaining two 
observed intertrace angles are assigned to e and ft. 
There are thus only three distinct ways of assigning 61, 
fi2, and 0 3 to a, fl, and y and therefore only three equa- 
tions like (14) to solve. Therefore, under Arrangement 
II, only up to twelve surface orientations will be found 
to be in accord with three {hOhk} or {hh2hk} trace 
directions. 

Surface orientations under Arrangement III 

In the case of Arrangement III it will be found that but 
for an uncertainty in sign 

[5+ 3g2+1 1 ( 1  2 3g2+~) ( 1  1 3g2+1)]  
3g 2 - 2 '  1/3 m n 3g 2 -  ' -- g + n 3g z - 2  
3g  2 +  1 1 2 _3g2_÷!~ 1 + 

3g 2 - 2 '  !/3 n 3g 2 - 2 ] '  - g m n 3g z -  

(20) 

gvl + 1/3gv2- 2/)3 = 2jahg/m 

- 3gvl + 1/3gv2 + 2v3 = - 6jahg/n 

vl = j3h . 

From these equations we get (except for an uncertainty 
in sign)" 

[ v ~1 ( 1 3) g (  
1 , ~  l + m  n ,-2- 2 

=l 1 3 g ( 2  

1 3)] 
m n 

,3 11 m n 

(18) 

In Arrangement III the planes ABP, BCP, and CAP 
are similarly oriented to one another so it does not 
matter how a set of observed inter-trace angles 61, 62, 
and fi3 are allocated to e, fl, and ?. There will therefore 
be in this case only one equation of the type (14) to 
contend with so that no more than four surface orienta- 
tions in keeping with three {h0hk} or {hh2hk} trace 
directions could arise. 

Identification of the correct surface orientation 

With up to as many as forty possibilities of surface 
orientations applicable to the three trace directions in 

A C 30A - 10" 
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Fig. 2 (in practice the number of possible orientations 
is frequently around twenty) the problem now is to 
identify the correct one. This can be done by checking 
the compatibility of the various possible surface 
orientations with other observed trace directions. 

If  we have a plane given by the vector (u~, u2, u3) then 
from a consideration of the geometry of the situation 
it will be found that the angle 0 between the trace of 

the plane and the direction CA in Fig. 2 is given by: 

been worked out and are displayed in Table 2 where 
is the angle the grain surface normal makes with [0001] 
and r/the angle the projection of the normal onto (0001) 
makes with [1210]. 

There are altogether sixteen possible surface orien- 
tations and it is clear that, allowing for reasonable 
errors in the data, it is difficult to differentiate between 
possibilities 1, 8, and 13 as the correct orientation as 
all three provide a {10]'2} trace direction close to the 

O=90O + tan-~ [(2Vz + l/3gv3) (ulv~ + uzv2 + uav3)- 2Uz- l/3gu3] 
u~(l/3gvz- 2V3) + vl(2u3- l/3guz) 

(21) 

For  the sake of convenience and simplicity we have 
not cared about the proper sign of (vl, Vz, v3). Further 
as we permute the observed trace angles 01, 02, and Oa 
among c~, fl, and )' we will for some permutations effect 
a 180 ° rotation of the crystal about HP in Fig. 2. Con- 
sequently, at this point, we are not certain whether 0 

should be measured from CA in the same sense as )' 
(see Fig. 2) or in the opposite direction. The correct 
direction can be ascertained however by determining, 
using equation (21), the angle Ocn which the trace of 

the plane BCP makes with CA, assuming )':,~90 °. If 
OcB turns out to be equal to )' then 0 should be measured 
in the same sense as ~,. If 0cn works out to be 180°-) ,  
then 0 should be measured in the opposite direction 
to ),. If  ~, = 90 °, we could consider in the same way 0AB 
instead where 0AB is the angle made by the trace of the 

._+ 
plane ABP with CA as evaluated from equation (21) 
and should be equal to 180 ° -  ~ for 0 to have the same 
sense as y. 

With a means to resolve the sense of 0 we may use 
equation (21) to compute the location of other ob- 
served trace directions on letting (ul, u2,ua) be the 
planes for these traces. This is to be done for all pos- 
sibilities of surface orientation and that surface orienta- 
tion for which the computed directions of the addi- 
tional traces are reasonably close to the actual observed 
directions will be the right one. 

D i s c u s s i o n  

Reed-Hill & Baldwin (1965) produced an example of 
a zirconium grain with four {10]'2} twins three of 
which may be taken to form a triangle ABC with angles 
~, fl, and ), equal to 42, 117, and 21 ° respectively and 

-+ 
the fourth makes an angle of 127 ° with CA (angles 

..._> 

made with CA will now be taken to be measured in the 
same direction as )'). Using the equations derived in 
this paper the various possible orientations of the 
zirconium grain surface consistent with the first three 
twin traces and the corresponding angles 04, 0s, 06, and 
00 the other {10]'2} twin boundaries and the basal 

-+ 
plane trace should respectively make with CA have 

fourth observed twin boundary. However, in the exam- 
ple, the basal plane trace was also observed with polar- 

ized light to make 157 ° with CA and this fifth trace obser- 
vation completely identifies the No. 1 possibility as the 
right orientation. (This orientation agrees with Reed- 
Hill & Baldwin's result obtained by Wulff-net opera- 
tions). 

Table 2. Possible orientations (~, r/) of a zirconium grain 
surface with three {10]2} twin traces forming a triangle 
ABC with angles c¢, fl, and ~ of 42, 117 and 21 ° respec- 
tively and the corresponding angles 04, 05, 06 and Oo made 
by the remaining three {10]'2} trace directions and the 

basal plane trace:with CA. 
Surface Remaining {1012} Basal 

orientation trace directions plane 
trace 

No. ~(°) ~(o) 0,(o) 0~(o) 0~(o) 0o(O) 
1 86 6 129 116 6 158 
2 51 21 177 104 85 145 
3 31 22 99 83 41 174 
4 48 27 163 81 58 19 
5 74 8 138 119 26 164 
6 20 2 119 92 46 68 
7 65 21 147 54 38 6 
8 10 5 126 74 65 96 
9 71 6 135 118 26 163 

10 34 5 154 100 59 83 
11 31 22 122 83 41 46 
12 33 16 140 100 59 90 
13 46 9 125 94 55 69 
14 71 5 119 113 6 156 
15 52 29 144 107 85 143 
16 41 27 107 69 30 71 

If Table 2 were to be inspected in detail it will be 
found that the chances are high of two observed ad- 
ditional trace directions being met by one orientation 
possibility only and by no other. Examination of other 
cases of ct, fl, and )' values leads to the conclusion that 
after the first three traces only two further trace obser- 
vations will generally suffice to dist inguishthe correct 
orientation possibility. Any further trace information 
should completely mark out the correct orientation. 

While the first three traces need to be of {hOhk} or of 
{hh2hk}, there is no restriction whatsoever as to the 
nature of further traces which could be used. These 
further traces may be of the same planes as the first 
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three or they may be of other planes such as {10T0} 
produced by slip and (0001) in the crystal and its twins 
revealed by polarized light. There should therefore be a 
good possibility of finding at least five suitable trace 
directions. It is also to be noted that the basal planes in 
twins of one type are all parallel to particular {hOhk} or 
{hh-2hk} planes in the crystal so that their traces may 
also be used for the initial three trace directions. 

In h.c.p, metals {hOhk} and {hh'2hk} traces usually 
arise from twins. If twins of different types exist then 
there is uncertainty as to the planes to be specified for 
the various observed twin boundaries. Fortunately, 
in such cases, one twin type, say {10T2}, usually pre- 
dominates. By considering then that a few likely 
choices of three twin traces are of {10T2}, working out 
the possible orientations with these choices, and 
checking to see whether there is an orientation for 
which the remaining observed traces are in acceptable 
directions, one should on many occasions discover the 
correct orientation. There have also been reports that 
twins of one type may be distinguished from another by 
their width and shape characteristics. For example, in 
yttrium (Carnahan & Scott, 1973), hafnium (Seelinger 
& Stoloff, 1971), and zirconium (Reed-Hill, Slippy & 
Buteau, 1963) {10T2} twins are generally broad lenticu- 
far shapes whilst the accompanying {1121} twins are 
narrow and parallel-sided. 

The initial three traces of {hOhk} or {hh2hk} em- 
ployed in the current method strictly refer to pyramidal 
planes. They may however also be taken to be of pris- 
matic {10T0} or {I 120} planes i l k  is made very small; 
for example, with g=0.001 the method is found to give 
orientations within 1 ° of values actually applying to 

or tra es aoo,y n  met o  to 
{10T0} or traces Arrangement I should be 
discarded for we see in Fig. 1 that when OK becomes 
very large planes A1AzK and A4,45K tend to parallelism 
so that one of the three {10]0} or {1120} planes is not 
accounted for in Arrangement I. Further, as OK be- 
comes very large Arrangement II approximates to Ar- 
rangement III so we need only consider solutions for 
Arrangement III. There will of course be multiple or- 

ientations because of the quartic equation (14), but 
these will be very nearly identical and will all be very 
close to the only orientation which can apply to three 
{IOTO} or {1120} traces. (When we deal with {1010} 
or {1120} traces unique orientations are obtained 
without consideration of further traces). 

Conclusion 

A set of equations and mathematical relationships 
have been derived from which given three trace direc- 
tions all of {hOhk} or all of {hh2hk} on the surface of a 
hexagonal crystal or grain and usually two other trace 
directions of any type the crystallographic orientation 
of the surface may be precisely evaluated. The case of 
three observed trace directions all of {10T0} or all of 
{I 120} fall within the framework of this treatment to a 
high degree of approximation. The explicitness of the 
equations and mathematical relationships allow a com- 
puter program to be readily written and thus full 
advantage may be taken of the speed, precision, and 
ease provided by computers. Because of the near- 
general nature of the traces which may be considered, 
the orientation-determination method developed here 
should be applicable to many kinds of trace observa- 
tions made of hexagonal crystals, particularly metals. 
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